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The general solution for a symmetric second-order tensor X of the equation 
X~Reb~ca = 0, where R is the Riemann tensor of a space-time manifold, and X 
is obtained in terms of the curvature 2-form structure of R by a straightforward 
geometrical technique, and agrees with that given by McIntosh and Halford 
using a different procedure. Two results of earlier authors are derived as simple 
corollaries of the general theorem. 

1. INTRODUCTION 

Let M be a space-time, a four-dimensional manifold carrying a Lorentz 
metric g of signature + 2  and l e t p E  M. Mclntosh and Halford (1981, 1982) 
have discussed the equation 

Se(aReb)cd = 0 (1)  

at p, where the Xob and R~b,.a are the components of a symmetric second- 
order tensor and the Riemann tensor, respectively, in some coordinate 
system about p. Their aim was to study the types of Riemann tensor for 
which (1) has solutions for X,, b other than the trivial solution X,b = q'gob, 
where the g,,h are the components of the metric tensor at p and q,E I~. The 
equation (1) has arisen in at least two recent discussions: (i) the algebraic 
determination of the metric tensor components from a given set of Riemann 
tensor components (Ihrig 1975a, b; 1976; Mclntosh and Halford, 1981, 
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1982). This problem arises naturally in the application of the equation of 
geodesic deviation to the scattering of a cloud of neutral test particles 
(Pirani, 1956; Szekeres, 1965), (ii) the discussion of curvature collineations. 
A curvature collineation is a vector field ~ defined on some open subset U of 
M such tha t  ~.~Rabcd-----0 holds in U, where fit denotes the Lie derivative 
along the paths of ~. A necessary condition for the existence of a curvature 
collineation ~ on U is that (1) holds in U with X,, b = ~Ca: b) (Katzin et al., 
1969). Thus the existence of a nontrivial solution of (1) is a necessary 
condition for the existence of a curvature collineation which is not a 
conformal motion since for the latter, ~t~: b) is proportional to g~h (Collin- 
son, 1970; Mclntosh and Halford, 1982). 

Mclntosh and Halford (1982) investigated the problem of nontrivial 
solutions of (1) by considering the canonical forms for a symmetric second- 
order tensor given by Plebafiski (1964). It turned out that for nontrivial 
solutions of (1) to exist, the maximum dimension of the bivector space 
spanned by the curvature 2-forms was 3, thus strengthening a result due to 
Ihrig (1975a). In this paper, a direct proof of this result will be given which 
is shorter and more amenable to a geometrical interpretation. It should be 
stressed that the approach given will be a purely algebraic study of (1) at the 
point p and no differentiability requirements will be taken into account. ~ 

2. T H E  MAIN RESULTS 

At p E M, one introduces a real null tetrad of vectors l, n, y, z, where l 
and n are null vectors and y and z unit spacelike vectors and where the only 
nonvanishing inner products between the tetrad members are y~y~ = z"z~ = 
- l %  G = 1. The metric tensor at p is related to the tetrad vectors by the 
completeness relation g~h = -21(~nb) + Y~Yh + z~zb. With this tetrad one 
can construct the associated 1-forms at p 

O l = l a d x  a, 0 2 = n a d x  a, 03= yadx a, 04= zadX a (2) 

written in terms of some coordinate system (x ") about p. The corresponding 
curvature 2-forms at p are then given by 

= • t~ A 0 d Oab 2"" t, ca V (3) 

Here the Rabcd are the components of the curvature tensor in the basis 
l, n, y, z. 

ISome results concerning the differentiability requirements have been given by Collinson and 
da Graqa Lopes Rodrigues Vaz (1982), and by Hall (1982). 
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One can now establish two results which show how the algebraic 
structure of each of the curvature 2-forms at p imposes certain restrictions 
on the algebraic structure of the symmetric tensor X~b through the equation 
(1). 

Theorem 1. If at p E M, F is a simple 2-form (bivector) whose blade 
is spanned by the vectors r and s and if X is a symmetric 
second-order tensor, then the following two conditions are equiva- 
lent: 

(i) X,.(~F"b) = O. 
(ii) The vectors r and s are eigenvectors of X with equal 

eigenvalues. 

Proof In components, one has F,, b = riasbl and 

Xc(aFCb) = 0 ~ rcX<~sb) = s~X~(~rb) 

=,X~brb=ara and X~bSh=aS~ ( a E R )  �9 

Now suppose that F is a nonnull 2-form at p. If l and n generate the 
unique pair of null eigendirections of F and if x and y are orthogonal 
spacelike vectors spanning the spacelike 2-space orthogonal to that spanned 
by l and n, then with an appropriate scaling, one may construct a real null 
tetrad l, n, y, z at p where the tetrad vectors satisfy the conditions given 
earlier. It then follows that there exists a, f l E R  such that F~b = ctl[anbl + 
flyfazbl. Further, if F is nonsimple then a and fl are both nonzero. 

Theorem 2. If at p E M, F is a nonsimple 2-form and X a symmet- 
ric second-order tensor then with the notation established above the 
following two conditions are equivalent: 

(i) Xct~FCb) = O. 
(ii) The null vectors l and n are eigenvectors of X with equal 

eigenvalues and the spacelike vectors y and z are eigenvectors of X 
with equal eigenvalues. 

Proof. Suppose that condition (i) holds and write Fab : alt~nbl + flyl~zhl 
where a and fl are both nonzero (since F is not simple). Then on contracting 
(i) successively with l b, r/b, yb, and z h one finds 

XcblbFC a = aXac lc 

XchnbFC a = - ctXacn c 

XcbybFCo = B X o c z  ~ 

Xc~z~FCo = _ f i X o c y  ~ 

(4) 

(5) 

(6) 

(7) 
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Next, since fl 4: 0, it follows easily that I and n are the only eigendirections 
of F and that they satisfy l~F~h = al h and n~F,b = -- an b. Hence it follows 
from (4) and (5) that there exist real numbers 7 and 8 such that X a b l  b = "yl a 

and X~hn b = 8n~, the symmetry of X showing that y = 8. Finally, since I and 
n span a timelike invariant 2-space of X at p, the spacelike 2-space 
orthogonal to it is also an invariant 2-space of X at p and consequently 
contains an orthogonal pair of spacelike eigenvectors of X (Churchill, 1932; 
Hall, 1976; 1979). Without loss in generality these eigenvectors will be 
supposed to coincide with the vectors y and z above. Equation (6) or (7) 
then shows that y and z have equal eigenvalues and statement (ii) in the 
theorem follows. The converse is immediately proved by applying Theorem 
1 to the 2-forms llanbl and yt~zhl. �9 

If the conditions and statements in Theorem 2 hold then it easily 
follows that 

X~b= - -2y l (anm+l~(y ,  y a + z j b  ) (y,  p. E R) (8) 

Thus the only eigenvectors admitted by X lie either in the 2-space spanned 
by l and n or that spanned by y and z, unless 3' = P., in which case the 
completeness relation shows that X~h = 7g~h- It follows that if this trivial 
solution is not to be the only solution of the equation X,.(~FCb) = 0, the only 
2-forms which may satisfy this equation must be linear combinations of 
ltJThl and yt~zhl. This is a consequence of the previous two theorems since 
any other 2-forms satisfying this equation would give rise to eigenvectors of 
X outside the blades of the 2-forms l[~nbl and yi~zbl. 

On applying these results to the equation (1) one sees that if nontrivial 
solutions for X are required and if the Riemann tensor has nonsimple 
curvature 2-forms, then these curvature 2-forms span a subspace of the 
space of all 2-forms at p of dimension at most 2. If the dimension is 2, then 
this subspace will be spanned by the simple 2-forms corresponding to ll~nhl 
and yt~zhl above. The possibility of this subspace having dimension 1 leads 
to a contradiction since it implies the existence of a nonsimple 2-form N 
satisfying Rabcd = +---NahNcd. But then the requirement Ra[bcdl = 0 implies 
that NaDNcd I --- 0, which is equivalent to N being simple. The conclusion is 
that if (1) is to have nontrivial solutions for X, then the curvature 2-forms 
must span a subspace of the space of all 2-forms at p for which a basis of 
simple 2-forms may be chosen. This greatly simplifies the procedure and the 
situation concerning (1) can be summarized in the next theorem. 

Theorem 3. If equation (1) holds at p, then at p 
(i) if the curvature 2-forms are spanned by a single (neces- 

sarily simple) 2-form F, then 

X~h = q~g~h + I~u~uh + 2uu~vb) + Xv~vt, (9) 
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where q~,/~, ~, X ~ R and u and v span the 2-space orthogonal to the 
blade of F; 

(ii) if the curvature 2-forms span a subspace of bivector space 
of dimension 2 or 3 and if the members of this subspace have a 
common eigenvector w with zero eigenvalue (necessarily unique up 
to a real scaling factor), then 

Xob = ~g~b + )~w,,wb (10) 

where ~, X E R; 
(iii) if the curvature 2-forms are spanned by the 2-forms ltanbl 

and yiaZbl where l, n, y, z constitute a real null tetrad at p, then 

X,~b = ~g~b + 2Xl(,,nh)= (~ -- X)gab + X(YoYh + z,,zb) (1 1) 

where q~, k ~ R; 
(iv) in all other cases 

X,,b =epg.b (12) 

where q, ~ R, is the only solution. 

Proof. Equation (1) imposes restrictions of the form Se(aFeb)--0 on X 
for each curvature 2-form F. So if in part (i) of the theorem F has a 
spacelike blade, say Fob = ytaZbl with y and z orthogonal spacelike vectors, 
then Theorem 1 shows that y and z are eigenvectors of X with equal 
eigenvalues. On completing y and z to a real null tetrad l, n, y, z and on 
considering X as a linear combination of symmetrical products of the tetrad 
members, one easily finds 

Xab = allalb + a2nan b + 2tx3l(anb) + tx(yay b + Z~Zb) 

= tXgob + cttlal b + a2nan b + 2 ( a +  a3)ltanb) (13) 

where a, O~l, or2, a 3 ~ ~, with a the common eigenvalue o f y  and z and where 
the completeness relation has been used. This expression is of the required 
form since the 2-space spanned by l and n is orthogonal to that spanned by 
y and z. A similar calculation can be used to establish the relevant 
expression when the blade of F is timelike or null and also to establish the 
result in part (ii) of the theorem. Now suppose that the curvature 2-forms 
are spanned by two simple 2-forms whose blades intersect only in the zero 
vector (equivalently whose blades are such that there is no nonzero vector 
orthogonal to both of them). If these blades are spanned by the vectors u t 
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and u 2 and by vj and v 2 then it follows that ul, u 2, v~, and D 2 are 
independent and Theorem 1 shows that they are eigenvectors of X where ul 
and u 2 have eigenvalue/~, say, and v 1 and v 2 have eigenvalue ~. If/~ = v, 
then since u I, u z, v~, and v 2 constitute a basis for the tangent space Tp(M) 
to M at p, it follows that Xob = ~gab (~ E R) is the only solution of (1). On 
the other hand, if/~ v a p then the 2-spaces spanned by u I and u 2 and by v~ 
and v 2 must be orthogonal and so one must be timelike and one spacelike. 
Hence one may select a real null tetrad I, n, y, z such that one of these 
2-spaces is spanned by ! and n and the other by y and z. Part (iii) of the 
theorem now follows by considerations similar to those which led to 
equation (8). It now easily follows that if the curvature 2-forms are spanned 
either by three independent 2-forms such that there is no nonzero vector 
orthogonal to all of them, or by four or more independent 2-forms, then 
there are no nontrivial solutions of (1). For if there were, one could in both 
cases find a spanning set of simple 2-forms. In the former case either all 
members of this spanning set contain a certain vector or else they generate a 
nonsimple linear combination of themselves and neither of these possibili- 
ties leads to nontrivial solutions of (1). In the latter case, nonsimple linear 
combinations of the spanning 2-forms always occur and again the result 
follows. This completes the proof of part (iv) of the theorem. �9 

3. D I S C U S S I O N  

Theorem 3 gives a complete description of equation (1) as regards the 
solutions for X given the curvature 2-form structure at p. It has a number of 
immediate consequences which can now be discussed. 

(i) Theorem 3 gives a geometrical interpretation and a more systematic 
approach to some of the results given in McIntosh and Halford (1982), who 
essentially studied the problem in reverse by considering given canonical 
forms for X. 

(ii) It follows as a consequence of Theorem 3 that if the curvature 
2-forms span a vector space of dimension 6 at p,  then Xab = 95gab (~ ~ R) is 
the only solution of equation (1). This result was first given by Ihrig (1975a). 

(iii) For vacuum space-times, the algebraic structure of the Riemann 
tensor is conveniently given by the Petrov classification. In this scheme, the 
possible types are, in the usual notation, I, D, II, N, and III  and their 
curvature 2-forms span subspaces of dimension 6, 6, 6, 2, and 4, respec- 
tively. Hence the only possibility for nontrivial solutions of (1) occurs at 
these points where the Riemann tensor is of Petrov type N. In this case, the 
canonical form for such a Riemann tensor shows that the curvature 2-forms 
are spanned by a null 2-form and its dual and it then follows from Theorem 
3(ii) that the general solution of (1) is X~b = ~g~b + ~l~lh (r ~ E•) ,  where 
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l" is the null vector which spans the repeated principal null direction of the 
Riemann tensor (and its null curvature 2-forms). This recovers the result 
first given by Collinson (1970). 

(iv) In those cases in Theorem 3 where the trivial solution Xab = ~g~b is 
not the only solution of (1) one can readily evaluate the Segr6 type, or, 
equivalently, the Plebahski type of the solutions for X (Plebafiski, 1964; Hall, 
1976; 1979). In fact, in case (i) of Theorem 3 when F has a spacelike blade, 
equation (13) shows that if exactly one of cq and a 2 is nonzero, the Segr6 
type of X is (2(1, 1)) (Plebaflski type [2N-2S][2_11 ) or some degeneracy 
of this type. If, however, a I = a 2 = 0 then the Segr6 type is ((1, 1)(1, 1)}([2T 
- 2 S ] r l _  q) or some degeneracy of this type. If a I and a 2 are both nonzero, 
then the null tetrad may be adjusted so that l all = l a2]. The two cases 
al = a 2 and az = - a 2  then lead, respectively, to the Segr~ types 
{ 1, 1(1, I )}( [T-  SI - 2Sz]t,_ t - q )  and {z, Z(1, 1)}([Z - Z -  2S]t ~_ l-,1) to- 
gether with their possible degeneracies. If F has a timelike blade, a similar 
calculation shows that the only possible Segr6 type is {(1, 1)1, 1 }([2T-  S t - 
$2]I~_~_~1 ) or one of its degeneracies. If F has a null blade then the only 
possibilities are the Segr~ types {(1, 1, 1)1 }([3T- S]t ~_ tl), {(2, 1)1 }([3N- 
SIt2- ll) and {(3, 1)}([4N]3 ) or their degeneracies. In case (ii) of Theorem 3, 
equation (10) shows that the possible Segr6 types are {1,(1,1,1)}([T- 
3S][t-i j), ((1, 1, 1)1 }([3T- S][j_ 1I) or {(2, 1, I)}([4N]121), together with their 
possible degeneracies, according as w a is timelike, spacelike, or null. In case 
(iii) of Theorem 3, the only possible Segr6 type is {(1, 1)(I, 1) }([2T-- 2 S]t~ - I1) 
or its degeneracy. These results agree with those in Table 1 of Mclntosh and 
Halford (1982). 

(v) The statement that, at p, the curvature 2-forms span a one-dimen- 
sional subspace of the space of all 2-forms [Theorem 3(i)] is equivalent to 
the statement that there are exactly two independent nonzero vectors k 
satisfying 

Roh~akd=O (14) 

This follows since (14) is equivalent to the vector k being orthogonal to all 
of the curvature 2-forms at p. In the notation of Theorem 3(i), the solutions 
k of (14) span a 2-space orthogonal to the blade of F. Similarly one shows 
that the situation in Theorem 3(ii) is equivalent to the existence of a single 
independent nonzero solution k of (14). In the notation of Theorem 3(ii) the 
solution of (14) (up to a real multiple) is the vector w. Only when the 
situation is as described in Theorem 3(iii) are there nontrivial solutions X of 
(1) without the existence of nonzero solutions k of (14). A more detailed 
account of equation (14) has been given by Mclntosh and Van Leeuwen 
(1982). 
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